

Chapter 7: User Authentication
Web applications today almost always require user authentication. Whether it’s social
media, online stores, blogs, or messaging apps, authentication ensures that users can
securely log in, access protected content, and perform actions based on their identity.
Authentication is one of the most important practical skills in web development because it
connects the user to your application while maintaining security and privacy.

In this chapter, you will learn:

●​ What authentication is and why it matters​

●​ The difference between authentication and authorization​

●​ Common authentication strategies​

●​ How JSON Web Tokens (JWTs) work​

●​ Implementing user authentication in Node.js and Express​

●​ Middleware and protecting routes​

●​ Token storage strategies and refresh tokens​

●​ Security best practices and common pitfalls​

●​ Real-world examples including role-based access​

By the end of this chapter, you will be able to build secure, full-featured user
authentication for your applications.

1. Understanding Authentication
Authentication is the process of verifying who a user is. It’s like showing an ID card before
entering a building: the building knows who you are and grants access accordingly.

Authentication is different from authorization, which determines what a user can do after
they are verified. For example:

●​ Logging in with a username and password → Authentication​

●​ Accessing an admin dashboard → Authorization​

Why Authentication is Important

1.​ Security: Prevent unauthorized access to sensitive data.​

2.​ Personalization: Display user-specific content and preferences.​

3.​ Accountability: Track user actions in the system.​

4.​ Business Logic: Enable features like order history, messaging, and dashboards.​

Without authentication, your server cannot distinguish between users, making dynamic
applications unsafe and impractical.

2. Common Authentication Methods
Authentication can be implemented in multiple ways:

A. Session-Based Authentication

●​ The server stores a session for each logged-in user.​

●​ Client stores a session ID in cookies and sends it with each request.​

●​ Pros: Simple, easy to implement.​

●​ Cons: Less scalable; sessions consume server memory.​

B. Token-Based Authentication (JWT)

●​ The server issues a token after a successful login.​

●​ Client includes the token in the HTTP header for each request.​

●​ Pros: Stateless, scalable, works with modern front-end frameworks and mobile apps.​

●​ Cons: Token management (expiration, revocation) requires attention.​

In this chapter, we focus on JWTs (JSON Web Tokens), which are widely used, secure,
and scalable.

3. How JWTs Work
JWTs are compact, URL-safe tokens that allow servers to verify users without storing
session data.

JWT Structure

A JWT consists of three parts, separated by dots:

header.payload.signature

1.​ Header: Contains metadata about the token and algorithm.​
 Example:​

{
 "alg": "HS256",
 "typ": "JWT"
}

2.​ Payload: Contains claims, usually user information like ID, username, and role.​
 Example:​

{
 "id": "12345",
 "username": "john_doe",
 "role": "user"
}

3.​ Signature: Ensures token integrity. Generated by combining the header and payload
with a secret key:​

HMACSHA256(base64UrlEncode(header) + "." + base64UrlEncode(payload), secret)

The server can verify the token by checking the signature. If valid, the user is authenticated.

4. Advantages of JWT Authentication
1.​ Stateless: Server does not need to store session data.​

2.​ Scalable: Works well with distributed systems and multiple servers.​

3.​ Secure: Token signature ensures integrity.​

4.​ Flexible: Can include user roles, expiration, and custom claims.​

5.​ Standardized: Supported across multiple platforms and programming languages.​

5. Setting Up User Authentication in Node.js
To implement JWT authentication, we need:

●​ Node.js and Express server​

●​ MongoDB database to store users​

●​ bcrypt for password hashing​

●​ jsonwebtoken to generate and verify tokens​

Step 1: Install Dependencies
npm install express mongoose bcrypt jsonwebtoken body-parser dotenv

Step 2: Define the User Model
const mongoose = require('mongoose');
const bcrypt = require('bcrypt');

const userSchema = new mongoose.Schema({
 username: { type: String, required: true, unique: true },
 email: { type: String, required: true, unique: true },
 password: { type: String, required: true },
 role: { type: String, default: 'user' }
});

// Hash password before saving
userSchema.pre('save', async function(next) {

 if (!this.isModified('password')) return next();
 this.password = await bcrypt.hash(this.password, 10);
 next();
});

// Compare password
userSchema.methods.comparePassword = function(password) {
 return bcrypt.compare(password, this.password);
};

const User = mongoose.model('User', userSchema);
module.exports = User;

Explanation:

●​ pre('save'): Hashes the password before saving.​

●​ comparePassword: Verifies password during login.​

●​ role: Can be user or admin, used for role-based access.​

Step 3: User Registration Endpoint
const express = require('express');
const bodyParser = require('body-parser');
const User = require('./models/User');

const app = express();
app.use(bodyParser.json());

app.post('/register', async (req, res) => {
 try {
 const { username, email, password } = req.body;
 const user = new User({ username, email, password });
 await user.save();
 res.status(201).json({ message: 'User registered successfully' });
 } catch (err) {
 res.status(400).json({ error: err.message });
 }
});

●​ Stores hashed passwords in MongoDB.​

●​ Returns a confirmation message after registration.​

Step 4: User Login Endpoint
const jwt = require('jsonwebtoken');
const SECRET_KEY = process.env.SECRET_KEY || 'mysecretkey';

app.post('/login', async (req, res) => {
 const { email, password } = req.body;
 try {
 const user = await User.findOne({ email });
 if (!user) return res.status(404).json({ message: 'User not found' });

 const isMatch = await user.comparePassword(password);
 if (!isMatch) return res.status(401).json({ message: 'Invalid credentials' });

 const token = jwt.sign(
 { id: user._id, username: user.username, role: user.role },
 SECRET_KEY,
 { expiresIn: '1h' }
);

 res.json({ message: 'Login successful', token });
 } catch (err) {
 res.status(500).json({ error: err.message });
 }
});

●​ Generates a JWT with id, username, and role.​

●​ Token is valid for 1 hour.​

6. Protecting Routes with Middleware
Middleware ensures that only authenticated users can access certain endpoints:

const authenticate = (req, res, next) => {
 const token = req.headers['authorization'];
 if (!token) return res.status(401).json({ message: 'Access denied' });

 try {

 const decoded = jwt.verify(token, SECRET_KEY);
 req.user = decoded;
 next();
 } catch (err) {
 res.status(401).json({ message: 'Invalid token' });
 }
};

app.get('/profile', authenticate, (req, res) => {
 res.json({ message: 'This is your profile', user: req.user });
});

●​ Middleware verifies JWT before granting access.​

●​ If invalid or expired, access is denied.​

7. Role-Based Access Control
Roles allow restricting access to certain users:

const authorize = (roles = []) => (req, res, next) => {
 if (!roles.includes(req.user.role))
 return res.status(403).json({ message: 'Forbidden' });
 next();
};

// Example route: Admin only
app.get('/admin-dashboard', authenticate, authorize(['admin']), (req, res) => {
 res.json({ message: 'Welcome Admin!' });
});

●​ authorize middleware checks user role before allowing access.​

8. Token Storage Strategies
Tokens must be stored securely:

1.​ LocalStorage: Easy but vulnerable to XSS attacks.​

2.​ HttpOnly Cookies: More secure; JavaScript cannot access cookies.​

3.​ Memory (SPA): Stored in memory, disappears on refresh (good for short-lived
tokens).​

9. Refresh Tokens
Access tokens should be short-lived. Refresh tokens allow users to get new access tokens
without logging in again:

●​ Store refresh token securely in HttpOnly cookies.​

●​ When access token expires, client requests a new token using the refresh token.​

●​ Server validates refresh token and issues a new access token.​

**10. Security
Best Practices**

1.​ Never store passwords in plain text.​

2.​ Use HTTPS to encrypt data in transit.​

3.​ Use strong, unpredictable secret keys.​

4.​ Implement token expiration and rotation.​

5.​ Validate and sanitize user inputs.​

6.​ Handle errors without exposing sensitive information.​

7.​ Regularly audit authentication logic for vulnerabilities.​

11. Real-World Example: Messaging App
●​ Users register and log in.​

●​ JWT allows them to access their messages and send new messages.​

●​ Admin role can view all messages, delete inappropriate content, or manage users.​

●​ Front-end sends JWT in request headers to access protected endpoints.​

12. Common Pitfalls
1.​ Storing tokens in unsafe locations → use HttpOnly cookies.​

2.​ Not hashing passwords → always use bcrypt.​

3.​ No token expiration → increases risk of misuse.​

4.​ Weak secrets → easily guessable JWTs.​

5.​ Not validating inputs → security vulnerabilities.​

13. Summary
●​ Authentication identifies users; authorization determines what they can do.​

●​ JWTs provide a stateless, scalable, and secure method.​

●​ Passwords must always be hashed; tokens must be stored securely.​

●​ Middleware protects routes and ensures role-based access.​

●​ Refresh tokens allow long sessions while keeping access tokens short-lived.​

●​ Following best practices ensures your authentication system is secure and reliable.​

By mastering JWT authentication, you can now build real-world applications with secure
login, role-based access, and protected routes, fully bridging the gap between front-end
and back-end functionality.

	Chapter 7: User Authentication
	1. Understanding Authentication
	Why Authentication is Important

	2. Common Authentication Methods
	A. Session-Based Authentication
	B. Token-Based Authentication (JWT)

	3. How JWTs Work
	JWT Structure

	4. Advantages of JWT Authentication
	5. Setting Up User Authentication in Node.js
	Step 1: Install Dependencies
	Step 2: Define the User Model
	Step 3: User Registration Endpoint
	Step 4: User Login Endpoint

	6. Protecting Routes with Middleware
	7. Role-Based Access Control
	8. Token Storage Strategies
	9. Refresh Tokens
	**10. Security
	11. Real-World Example: Messaging App
	12. Common Pitfalls
	13. Summary

